Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 11: 590771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996536

RESUMO

BACKGROUND: Myoglobin (MB) is increasingly recognized as a key player in cancer growth and metastasis. Low oxygen tensions, commonly associated with highly aggressive and recurrent cancers, have been shown to regulate its expression in several cancers such as lung, neck, prostate and breast cancer. However, it is not yet known whether it contributes to the growth and spread of brain cancers especially Glioblastoma multiforme (GBM). METHODS: Here we investigate the expression of MB, and its correlation with the hypoxia markers carbonic anhydrase IX (CAIX) and lactate dehydrogenase A (LDHA), in human tissue microarrays of multiple organ tumors, brain tumors, and GBM tumors, and their respective cancer-adjacent normal tissues. Correlation between MB protein expression and tumor grade was also assessed. RESULTS: We show that MB protein is expressed in a wide variety of cancers, benign tumors, cancer-adjacent normal tissues, hyperplastic tissue samples and normal brain tissue, and low oxygen tensions modulate MB protein expression in different brain cancers, including GBM. Enhanced nuclear LDHA immune-reactivity in GBM was also observed. Finally, we report for the first time a positive correlation between MB expression and brain tumor grade. CONCLUSION: Our data suggest that hypoxia regulate MB expression in different brain cancers (including GBM) and that its expression is associated with a more aggressive phenotype as indicated by the positive correlation with the brain tumor grade. Additionally, a role for nuclear LDHA in promoting aggressive tumor phenotype is also suggested based on enhanced nuclear expression which was observed only in GBM.

2.
Oncol Rep ; 43(3): 975-985, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32020230

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive human brain cancer. Little is known regarding how these cells adapt to the harsh tumor microenvironment, and consequently survive and resist various treatments. Myoglobin (MB), the oxygen­binding hemoprotein, has been shown to be ectopically expressed in different human cancers and cell lines, and its expression is hypothesized to be an adaptation mechanism to hypoxia. The aim of the present study was to determine whether cancer­related and hypoxia­responsive MB mRNA splice variants are expressed in human GBM cells and glioblastoma tumor xenografts, and whether their expression is induced by hypoxia and correlated with hypoxia markers [lactate dehydrogenase A (LDHA), glucose transporter 1 (GLUT1), vascular endothelial growth factor (VEGF) and carbonic anhydrase IX (CAIX)]. Conventional reverse transcription (RT)­PCR, DNA sequencing, RT­quantitative PCR and immunohistochemistry were conducted to investigate MB expression in hypoxia­sensitive (M010b, M059J) and ­tolerant (M059K, M006xLo) GBM cell lines that also exhibit differential response towards radiation, rendering them a valuable translational GBM model. It was revealed that cancer­related MB variants 9, 10, 11 and 13 were expressed in GBM cells under normoxia, and following hypoxia, their expression exhibited modest­to­significant upregulation that correlated with hypoxia markers. It was also demonstrated that MB was upregulated in hypoxic microregions of glioblastoma tumor xenografts that were stained in matched tumor regions of serial tumor sections with the hypoxia markers, pimonidazole, CAIX, VEGF and LDHA. The present study identified myoglobin as a potential contributor to the hypoxia adaptation and survival strategies of glioblastoma, and may explain the aggressiveness and frequent recurrence rates associated with GBM.


Assuntos
Biomarcadores Tumorais/genética , Glioblastoma/genética , Mioglobina/genética , Hipóxia Tumoral/genética , Anidrase Carbônica IX/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Transportador de Glucose Tipo 1/genética , Xenoenxertos , Humanos , L-Lactato Desidrogenase/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Isoformas de Proteínas/genética , RNA Mensageiro/genética , Microambiente Tumoral/genética , Fator A de Crescimento do Endotélio Vascular/genética
3.
Traffic ; 17(11): 1214-1226, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27601190

RESUMO

Advances in membrane cell biology are hampered by the relatively high proportion of proteins with no known function. Such proteins are largely or entirely devoid of structurally significant domain annotations. Structural bioinformaticians have developed profile-profile tools such as HHsearch (online version called HHpred), which can detect remote homologies that are missed by tools used to annotate databases. Here we have applied HHsearch to study a single structural fold in a single model organism as proof of principle. In the entire clan of protein domains sharing the pleckstrin homology domain fold in yeast, systematic application of HHsearch accurately identified known PH-like domains. It also predicted 16 new domains in 13 yeast proteins many of which are implicated in intracellular traffic. One of these was Vps13p, where we confirmed the functional importance of the predicted PH-like domain. Even though such predictions require considerable work to be corroborated, they are useful first steps. HHsearch should be applied more widely, particularly across entire proteomes of model organisms, to significantly improve database annotations.


Assuntos
Proteínas de Membrana/química , Domínios de Homologia à Plecstrina , Proteínas de Saccharomyces cerevisiae/química , Biologia Computacional/métodos , Bases de Dados de Proteínas , Projetos Piloto , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...